
1 2 3

4 5 6

7 8 9

Figure 1

Tic Tac Toe – Documentation

Terminology Used

i. board: the 3×3 matrix in which the ‘X’s and ‘O’s are marked

ii. cell: one of the 9 positions on the board

iii. cell index: an index number in the range 1-9 referring to each cell on the board (as shown in

figure 1)

iv. field: one of the three rows (0, 1, 2), three columns (3, 4, 5) or two diagonals (6, 7) on

completion of which the game ends in victory

v. field index: an index number in the range 0-7 referring to the eight fields defined

vi. status: the status of ownership of a field can be empty (no one occupying it), player (only player

occupying it), computer (only computer occupying it) or none (both occupying it and hence

belonging to no one)

Macros

� MAINDIAG: refers to the field index of the main diagonal (6)

� BACKDIAG: refers to the field index of the reverse diagonal (7)

� CELL(cellind): extracts the cell from the cell index

� ROW(cellind): extracts the row from the cell index

Figure 2

0

1

2

5 3 4 6 7

� CELLIND(row,col): inputs the row and column and outputs cell index

Structures and External Variables

� char board[3][3]: the 3×3 matrix which represents the game board

� struct cellinfo: contains two 4-bit variables that store the cell row and column information

� enum control status[8]: the status of the 8 fields of the game; may have any of 4 values (EMPTY,

NONE, COMPUTER, PLAYER)

� diff: the difficulty level (ranging from 0-4)

Source Files

� tictac.c: main source file

� ai.h: contains the AI script for the computer’s moves

� display.h: contains the display procedures

� humint.h: contains the human interaction procedures for getting input from the player

� victory.h: contains procedures for updating field status and deciding victory

Code Documentation

ai.h:

char masterbrain()

� Purpose: the AI function which decides which cell to mark

� Arguments: none

� Return Value: a namesake return value with no significance; char datatype is returned due to its

minimal size

Algorithm:

• Choose between stupid or wise decision depending on the difficulty level.

• If the centre cell is blank, occupy it.

• If the computer can win in the next move, do it.

• If the player can win in the next move, block him/her.

• If computer cannot win or block, extend its own field.

• When none of the decisions mentioned above is made, place at the first blank cell.

int centreblank()

� Purpose: finds if the centre cell is blank

� Arguments: none

� Return Value: TRUE if centre cell is blank, FALSE if centre cell is occupied

int firstblank()

� Purpose: finds the first blank cell on the board

� Arguments: none

� Return Value: the cell index of the first blank cell encountered searching in the cell index order

1-9; if no blank cell is found, it returns the cell index of the cell (3,3) which is a hypothetical

quantity.

void execution(struct cellinfo cell)

� Purpose: executes the decision of the AI script

� Arguments: struct cellinfo cell (representing the decision of the AI)

� Return Value: none

Algorithm:

• Mark appropriate cell.

• Update field control status.

• Update screen.

display.h:

void updatescreen()

� Purpose: refreshes the game display screen

� Arguments: none

� Return Value: none

Algorithm:

• Clear the game screen.

• Print game details such as game title and difficulty level.

• Print the board.

void printgamedetails()

� Purpose: prints the game details such as game title and difficulty level

� Arguments: none

� Return Value: none

Algorithm:

• Print game title.

• Print player and computer markers.

• Print difficulty level.

void printboard()

� Purpose: prints the current state of the board

� Arguments: none

� Return Value: none

Algorithm:

• Read the board and print the characters in the appropriate colors as given below:

o ‘X’ – Red

o ‘O’ – Blue

o ‘X’ + 1 – Red blinking X

o ‘O’ + 1 – Blue blinking O

o Null – the cell index of the cell in light cyan

• Set textcolor back to light gray.

humint.h:

void awaitplayerresponse()

� Purpose: receives user input and pass it on for validation

� Arguments: none

� Return Value: none

 Algorithm:

• Print message prompting user for cell index no. to cross.

• Scan the input from the user.

• Clear stdin.

• Validate the user input for errors.

void validateinput(int input)

� Purpose: validates user input for errors

� Arguments: int input(representing the user input)

� Return Value: none

Algorithm:

• If the cell index is outside the range 1-9 or the cell is already marked,

o Print appropriate error message.

o Increment stupiditycount.

o If stupiditycount is equal to 3, raise stupidity alarm. After alarm, revert stupiditycount

back to 0.

o Get user input again.

• If no errors are found,

o Mark appropriate cell.

o Update field control status.

o Update user screen.

void stupidityalarm()

� Purpose: displays the stupidity alarm messages

� Arguments: none

� Return Value: none

victory.h:

void updatecontrol(struct cellinfo cell, int wru)

� Purpose: calls the updatestatus function with properly processed arguments

� Arguments: struct cellinfo cell (representing the cell marked), int wru (saying whether the cell

was marked by the player or the computer)

� Return Value: none

Algorithm:

• Update the status of the row field the cell belongs to.

• Update the status of the column field the cell belongs to.

• If the cell lies on the main diagonal, update its status.

• If the cell lies on the reverse diagonal, update its status.

void updatestatus(int fieldind, int wru)

� Purpose: updates the status of a field

� Arguments: int fieldind (the field index of the field whose status is to be updated), int wru

(saying whether the cell was marked by the player or the computer)

� Return Value: none

Algorithm:

• If the field was previously empty, hand over ownership to wru.

• If the field was previously owned by the other player, change ownership to NONE.

void checkforvictory()

� Purpose: checks whether the player or computer has won, prints the appropriate message on

the screen and exits execution of the program

� Arguments: none

� Return Value: none

Algorithm:

• If the status of a field is either COMPUTER or PLAYER and if the no. of nulls in that field is 0, then

victory has been achieved by either the computer or the player respectively.

• If victory has been achieved, take the following action:

o Add blink effect to the winning fields.

o Update screen.

o Print appropriate message.

o Exit execution of the program.

int fieldfunc(int fieldind, char mode)

� Purpose: interacts with the fields and does three different operations (counting nulls, finding

blanks, adding blink effect) depending on the mode

� Arguments: int fieldind (the field index of the field to interact with), char mode (the mode

representing the operation to perform)

� Return Value: none

Algorithm:

• If mode is ‘c’, return the no. of nulls in the field.

• If mode is ‘b’, return the cell index of a blank cell in the field.

• If mode is ‘v’, add blink effect to the cells of the winning field.

• The default return(63) has no significance and is just to suppress the unreachable code warning.

Difficulty Levels:

In levels 0 to 3, the player has 20%, 40%, 60%, 80% chance of winning respectively.

The level 4 is invincible, as far as our testing has shown. If you do beat it, please do inform us at

theroarofthedragon@gmail.com

